This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
A Comprehensive Guide to Social LearningTheory GyrusAim LMS GyrusAim LMS - Social learningtheory’s fundamental tenet is that people learn by watching, copying, and behaving like others in social situations. What Is Social LearningTheory?
A Comprehensive Guide to Social LearningTheory GyrusAim LMS GyrusAim LMS - Social learningtheory’s fundamental tenet is that people learn by watching, copying, and behaving like others in social situations. What Is Social LearningTheory?
A Comprehensive Guide to Social LearningTheory Gyrus Systems Gyrus Systems - Best Online Learning Management Systems Social learningtheory’s fundamental tenet is that people learn by watching, copying, and behaving like others in social situations. What Is Social LearningTheory?
If you’re registered for ICLR 2023, we hope you’ll visit the Google booth to learn more about the exciting work we’re doing across topics spanning representation and reinforcement learning, theory and optimization, social impact, safety and privacy, and applications from generative AI to speech and robotics.
Published on February 20, 2025 11:54 PM GMT TLDR: We made substantial progress in 2024: We published a series of papers that verify key predictions of Singular LearningTheory (SLT) [ 1 , 2 , 3 , 4 , 5 , 6 ]. We scaled key SLT-derived techniques to models with billions of parameters, eliminating our main concerns around tractability.
Linderman, David Sussillo Contact : jsmith14@stanford.edu Links: Paper | Website Keywords : recurrent neural networks, switching linear dynamical systems, interpretability, fixed points Compositional Transformers for Scene Generation Authors : Drew A. Smith, Scott W.
Manning, Jure Leskovec Contact : xikunz2@cs.stanford.edu Award nominations: Spotlight Links: Paper | Website Keywords : knowledge graph, question answering, language model, commonsense reasoning, graph neural networks, biomedical qa Fast Model Editing at Scale Authors : Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, Christopher D.
Drawing from adult learningtheories, ECB utilizes a variety of strategies such as: Vehicle of instruction: face-to-face meetings, teleconferences, classroom style learning, web-based mechanisms, manuals, etc. But the key to success in ECB is participation. So the evaluator has to consider if they are going to: Teach.
This guide provides an opinionated overview of recent work and open problems across areas like adversarial testing, model transparency, and theoretical approaches to AI alignment. Robust unlearning: One idea for reducing AI risks is to remove models' knowledge of potentially dangerous topics, such as cybersecurity exploits or virology.
Platt , Fernando Pereira , Dale Schuurmans Keynote Speakers The Data-Centric Era: How ML is Becoming an Experimental Science Isabelle Guyon The Forward-Forward Algorithm for Training Deep Neural Networks Geoffrey Hinton Outstanding Paper Award Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding Chitwan Saharia , William Chan (..)
One way is to see if it helps us prove things about models that we care about knowing. In this episode, I speak with Jason Gross about his agenda to benchmark interpretability in this way, and his exploration of the intersection of proofs and modern machine learning. Whats the theme? Jason Gross (00:01:02): Okay.
We organize all of the trending information in your field so you don't have to. Join 12,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content