This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Using the ADDIE for designing your workshop, you arrive at the “E” or evaluation. ” While a participant survey is an important piece of your evaluation, it is critical to incorporate a holistic reflection of your workshop. There are two different methods to evaluate your training. Use LearningTheory.
This call spurred the increasing demand for program evaluation. In your organization, this may look like negative attitudes toward evaluation, poor research designs and collecting data but not using the data. The root problem here is poor evaluation capacity. The root problem here is poor evaluation capacity.
This book is filled with great tips on designing engaging learning experiences that help your participants connect, inspire, and engage. The model balances content, learning design, and participants. The ideas, tips, and tricks are grounded in adult learningtheory, but the book is very practical.
Designing and delivering a training to a nonprofit audience is not about extreme content delivery or putting together a PowerPoint and answering questions. If you want to get results, you need to think about instructional design and learningtheory. And, there is no shortage of learningtheories and research.
If you’re registered for ICLR 2023, we hope you’ll visit the Google booth to learn more about the exciting work we’re doing across topics spanning representation and reinforcement learning, theory and optimization, social impact, safety and privacy, and applications from generative AI to speech and robotics.
This guide provides an opinionated overview of recent work and open problems across areas like adversarial testing, model transparency, and theoretical approaches to AI alignment. We think this adversarial style of evaluation and iteration is necessary to ensure an AI system has a low probability of catastrophic failure.
Some relevant criteria for evaluating a specification language include: How expressive is the language? In general, there are many ways to get an AI system to do what we want for example, we can use supervised learning, imitation learning, prompting, or reward maximisation. This is called a behavioural model.
Kochenderfer Contact : philhc@stanford.edu Links: Paper Keywords : deep learning or neural networks, sparsity and feature selection, variational inference, (application) natural language and text processing Provable Guarantees for Self-Supervised Deep Learning with Spectral Contrastive Loss Authors : Jeff Z. Smith, Scott W.
Manning, Jure Leskovec Contact : xikunz2@cs.stanford.edu Award nominations: Spotlight Links: Paper | Website Keywords : knowledge graph, question answering, language model, commonsense reasoning, graph neural networks, biomedical qa Fast Model Editing at Scale Authors : Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, Christopher D.
In particular, when a reward model is optimised, then ordinary statistical learningtheory tells us that this model eventually will have a good generalisation error relative to the training distribution. Moreover, when a reward model is optimised, this effectively incurs a distributional shift.
Platt , Fernando Pereira , Dale Schuurmans Keynote Speakers The Data-Centric Era: How ML is Becoming an Experimental Science Isabelle Guyon The Forward-Forward Algorithm for Training Deep Neural Networks Geoffrey Hinton Outstanding Paper Award Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding Chitwan Saharia , William Chan (..)
One way is to see if it helps us prove things about models that we care about knowing. In this episode, I speak with Jason Gross about his agenda to benchmark interpretability in this way, and his exploration of the intersection of proofs and modern machine learning. Whats the theme? Jason Gross (00:01:02): Okay.
We organize all of the trending information in your field so you don't have to. Join 12,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content