This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Using the ADDIE for designing your workshop, you arrive at the “E” or evaluation. ” While a participant survey is an important piece of your evaluation, it is critical to incorporate a holistic reflection of your workshop. There are two different methods to evaluate your training. Use LearningTheory.
Designing and delivering a training to a nonprofit audience is not about extreme content delivery or putting together a PowerPoint and answering questions. If you want to get results, you need to think about instructional design and learningtheory. And, there is no shortage of learningtheories and research.
We think this adversarial style of evaluation and iteration is necessary to ensure an AI system has a low probability of catastrophic failure. Wed like to support more such evaluations, especially on scalable oversight protocols like AI debate. and Which rules are LLM agents happy to break, and which are they more committed to? .
If you’re registered for ICLR 2023, we hope you’ll visit the Google booth to learn more about the exciting work we’re doing across topics spanning representation and reinforcement learning, theory and optimization, social impact, safety and privacy, and applications from generative AI to speech and robotics.
Some relevant criteria for evaluating a specification language include: How expressive is the language? However, this is not the only option, and it is not self-evident that it is the right choice. Some other notable options include e.g. multi-objective RL, temporal logic, or different kinds of non-Markovian rewards.
Alternatively, see the main paper. The Perils of Optimizing Learned Reward Functions: Low Training Error Does Not Guarantee Low Regret In this paper , we look at what happens when a learnt reward function is optimised. This paper is discussed in more detail in this post.
Evaluation surveys showed that Book Arts Santa Cruz members felt their bonds were strengthened as they connected with members in a collaborative capacity that increased group dialogue and stimulated a sense of pride, identity and vision around their work as a group at this event.
And a technical note: it needs to be in some first-order system or alternatively, you need to measure proof checking time as opposed to proof length. Daniel Filan (00:28:50): If people remember my singular learningtheory episodes , theyll get mad at you for saying that quadratics are all there is, but its a decent approximation. (00:28:56):
We organize all of the trending information in your field so you don't have to. Join 12,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content